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Higgs Boson Searches

* The Higgs boson is the last missing piece of the SM.

* Search strategy complicated by decay properties:
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D —-—-| o Typically there are
| g three search regions:
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(7) 90GeV < My < 130 GeV,
(i) 130GeV < My < 2- My,
(197) 2-Mz < Mg < 800 GeV.
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* Search strategies vary in different mass regions.



Higgs Search at the LHC

* For the Higgs mass range:

130 GeV < my;, < 180 GeV

* Higgs search channel:

gg — h — WtW- = (tuvl—v

* Large backgrounds from:

pp — tt — BWHbW— — (tul~v + Jets

* Background elimination requires jet vetoes:

veto events with jets of pp > 20 GeV
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background ratio

(Dittmar, Dreiner

LHC 14 TeV Accepted event fraction

reaction pp — X o x BR? [pb]| | cut 1-3 | cut 4-6 | cut 7

pp— H — WIW- (mg = 170 GeV) 1.24 021 | 0.18 | 0.080
pp — WHW~= 7.4 0.14 0.055 0.039

pp — tt (my = 175 GeV) 62.0 0.17 0.070 | 0.001

pp — Witb (my = 175 GeV) ~6 0.17 0.092 0.013




Higgs low pT Restriction

\

pp — h+ X
™~

Restrict pT of Higgs
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* We restrict the transverse momentum of the Higgs:

my > T > AQCD

* Such pT restrictions can be studied for any color neutral
particle.VWe use Higgs production as an illustrative example.



Factorization
/

LHC is a complicated
environment!

-Proton structure
-soft, collinear radiation
-underlying events

-hadronization
-hard interactions
-multiple scale physics

* How do we make sense of this environment!?

Factorization! >




Factorization

do = g d(ff;}art ® fi(&a) ® fi(&)
—= SN N\ /
Calculable in Extracted from data
pQCD.

* Separates perturbative and non-perturbative scales.

* Turns perturbative calculations into a predictive framework in
the complicated collider environment.

* Factorization is not obvious and often difficult to prove.
Few theorems exist for hadron colliders.



Resummation

* Fully inclusive Drell-Yan:

do = Zd Pt f; (&)@ 116

lees at the Live at non-perturbative
hard scale. scale.

1

RG evolve to hard scale.

* Large logarithms of hard and non-perturbative scales
arise. Resummation needed.

* Resummation done by evaluating PDFs at the hard scale
after renormalization group running (DGLAP).



Resummation

* In the presence of final state restrictions:

do = dO',E)art@fi(fa)@fj(fb)
2; p N

Multiple disparate Live at non-perturbative
scales involved. scale.

1

Additional resummation
needed.

* The low transverse momentum distribution in Drell-Yan is
such an example.



Why do logs arise from final state restrictions!?

* Recall fully inclusive electron-positron annihilation.

+ ‘ >V \’@ + >\f\ Q}Q/Qf ‘

Cancellation of infrared divergences
between virtual and real graphs.

>f\f\

—>  Infrared Safety!

* Incomplete cancellation of IR divergences in presence of
final state restrictions gives rise to large logarithms of
restricted kinematic variable.



Low p I Region

* The schematic perturbative series for the pT

distribution for pp — h + X
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Large Logarithms spoil
perturbative convergence

* Resummation of large logarithms required.

* Resummation has been studied in great detail in the Collins-
Soper-Sterman formalism.

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, VWebber; Ladinsky, Yuan; Fai, Zhang;
Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, ....)



Collins-Soper-Sterman Formalism



CSS Formalism

A(P4) 4+ B(Pg) —» C(Q)+ X, C=~,W=*2zh
* The transverse momentum distribution in the CSS
formalism is schematically given by:

(resum) (Y)
doaB—cx dosp_cx | A0apg_.cx

dQ? dy dQ3. — dQ?dydQ% " dQ? dy dQ?

Most singular
contribution
_-
~
~

~

T

Soft or collinear
pT emission

Back to Back hard jets



CSS Formalism

Focus of this talk

Y
A0 AB—CX - dol) ox
dQ? dy dQ3 - dQ? dy dQ7
* Singular as at least * Less Singular
Qr* as Qr — 0 terms.
* Important in * Important in
region of small Q. region of large Qr.

* Treated with
resummation.



CSS Formalism

e The CSS resummation formula takes the form:

Perturbatively

PDF calculable

) V

d20' deJ_ —iD-b
= Uo/—e proL Z Ca ® fayp] (x4,00/b1) |Cb ® foyp| (z5,b0/bL)

ln—A(Ozs(,uQ)) - B(Ozs(,uz))] } . «<— Sudakov Factor

N/

Coefficients with well defined
perturbative expansions



CSS Formalism

e The CSS resummation formula takes the form:

Perturbatively

PDF calculable

) V

d20' deJ_ —iD-b
= Uo/—e proL Z Ca ® fayp] (x4,00/b1) |Cb ® foyp| (z5,b0/bL)

Q? d,u2 QQ , ,
X exp — |In— A(as(1”)) + B(as(p”))| ¢ - < Sudakov Factor
b2/b2 M H \ /
/ Coefficients with well defined

perturbative expansions
Landau Pole




CSS Formalism

d*o d2bJ_ —iFr-b
= 00/ e PTOL Z [Ca ® fayp) (x4,00/01) [Co @ forp] (23, bo/bL)

dedY (27T)2 b
Q4,2 A2
pol, @
- exp{ [ 2A<as<u2>>+B<as<u2>>]}.
p2/b2 M H

Landau Pole

* Landau pole appears for ANY pT.



CSS Formalism

dpcf(cti = 90 / gﬁ;fﬁ_iﬁ T Zb: [Ca ® fayp| (x4,b0/01) |Co ® forp] (x5,b0/bL)
X exp {/b;; d:f 1ﬂ§jA(%(u2)) + B(Ozs(u2))] } -
_andau pole appears for ANY pT.
Landau pole must be treated with admodel dependent prescriptiom

(Collins, Soper, Sterma; Kulesza, Laenen,Vogelsang; Qiu, Zhang,...)



d’o

de dY

X

CSS Formalism

d?b L
00/ (%; e b ; [Ca ® fayp| (x4,b0/01) |Co ® forp] (x5,b0/bL)

-y R
/Q d,u2 Q2
exp 5
p2/b2 M

/

In

Alas (%)) + B(as(u2))] } -

Landau Pole

* Landau po

* Landau po

e appears for ANY pT.

e must be treated with acmodel dependent prescriptiom

(Collins, Soper, Sterma; Kulesza, Laenen,Vogelsang; Qiu, Zhang,...)

e Obtaining a smooth transition from low to high pT is typically
plagued with problems due to prescription dependence of
resummed result.



EFT Approach



EFT framework

* The low transverse momentum distribution is affected by
physics at the scales:

my > pr > AQC’D

* Hierarchy of scales suggests EFT approach with well defined
power counting.

* The most singular pT emissions recoiling against the Higgs

are soft and collinear emissions whose dynamics may be
addressed in Soft-Collinear Effective Theory (SCET).



EFT framework

QCD(nf = 6) — QCD(nf = 5) — SCETpT — SCETAQCD

Top quark —>
integrated out.
Matched onto

SCET. > (SCET,,

Soft-Cf)Ihn.ear S
factorization.

Matching onto

. (ror
PDFs.



EFT framework

QCD(nf = 6) — QCD(nf = 5) — SCETpT — SCETAQCD

Top quark

integrated out.

Matched onto
SCET.

Soft-collinear
factorization.

Matching onto
PDFs.

> ((SCET,, )

'

Newly defined objects

describing

soft and collinear pT emissions

m@@

) &C




SCET Factorization Formula

e Factorization formula derived in SCET in schematic form:

? )
~_ ~HRGIRFf®

dp7dY \/
\

Hard function. Transverse momentum PDFs.
l function. l
Sums logs of M/ pr Evaluated at pT scale. RG evolved to pT scale

* All objects are field theoretically defined.
* Large logarithms are summed via RG equations in EFTs.

* Formulation is free of Landau poles.



Integrating out the top

QCD (ny =5) <€ We are here

SCET,, T l
& ® @ D5 ——*Z?-H
RTTILER

* Leading term in the Higgs effective interaction with Gluons:

h ) 11
— — @ Hv — 5 1 i 2
,Cmt CGGh . GW/GG : CGGh o { —+ 1 -+ O(Ozs)}

1

Two loop result for
Wilson coefficient.

(Chetyrkin, Kniehl, Kuhn, Schroder, Steinhauser, Sturm)



Matching onto SCET

* Matching equation:
OQC’D :/dwldeQ C<w17w2) O(wlij) —— = — -
QCD SCET

Tree level matching

Matching real
emission graphs

Soft and Collinear emissions
build into Wilson lines

determined by soft and collinear
gauge invariance of SCET.

e Effective SCET operator:
O(wr,ws) = guh T{Tx | Su(g Bl ) S} Su(9By 1 )uS1 |}



SCET Cross-Section

We are here
ORONO e SCET differential cross-section:
d*c 1 [1} /dehl /dn-phdﬁ-ph

dudt — 2Q2l4l ) (2m)2 2(27)?

X 0(u— (p2 — pn)?)o(t — (p1 — pn)?) Z Z |C(wi,w2) @ (hX, X5 X,|O(wr,ws)|pp) ‘2

initial pols. X

x (2m)*0W(py + pa — Px,, — Px, — Px, — pn),

(2m)0(n - pp + 71 - pr)o(n - pun - pp — ﬁ}z —mj)

e Schematic form of SCET cross-section:

d2
" /PS|C® (O)

dp2.dY / T \

Phase space Hard SCET matrix
integrals. matching element.
coefficient. T

Factorize using
soft-collinear
decoupling




Factorization in SCET

(— We are here

® @ >
- dzidY | PsBe(O)

Factorize cross-section
using soft-collinear
decoupling in SCET

\4

~ (B, ® B,
dp%dY /@

Hard matching Decoupled
coefficient collinear and

squared soft functions




Factorization in SCET

(— We are here

d2
~H®DB,®B;®S5

NSO\

Hard function Impact-parameter Beam Soft function
Functions
(iBFs)
Physics of hard scale. Describes collinear Describes soft

Sums logs of mh/pT. pT emissions pT emissions



Factorization in SCET

(— We are here

. . . .
Factorization formula in full detail: .

d20' (2 d bJ_ nl
= dpi-dpy, | d?k e ki L l
du di 28622/ Pr ph/ h/

U_mh+Qpl;] [t_mh+Qph] [phpE—EiL—mi]/dwlsz\C(wuwz,u)\Q

(N2
o]
X /dk‘:dk,,—: BSB(WM k‘:@_?bJ_)/J’) Bﬁaﬁ(w27 k‘%,bj_,/,b) 8(0.)1 _pg _ kq-;WZ _pz o kqi—)bJ_?:u)

n-collinear bn-collinear Soft
iBF iBF

* iBFs and soft functions field theoretically defined as the
fourier transform of:

I (wi,x”, @y, p) = Z ;| [gBin1 5@, 21)0(P — wi)gBi, 14 (0)]p1)
initial pols.

Tyt y ) = Y (pal[9Bi syt y0)d(P — wa)g B, 10(0)] Ip2)
initial pols.

S(z, ) = (0T [Tr (SﬁTDS;LSnTCS);) (z)} T [Tr (snTCs;sﬁTDs;) (0)} 0)



Factorization in SCET

2 ~ ~
N H®B,®B, 5

dpzdY \ /

iBFs are proton matrix elements
and sensitive to the
non-perturbative scale

* The iBFs are matched onto PDFs to separate the perturbative
and non-perturbative scales:

~ ~

B,=1,;® [, Br=15;® [,

T

iBF Matching PDF
coefficient



iBFs to PDFs

CEORC
ONOEC

<€ We are here
6 ‘

* iBF is matched onto the PDF with matching coefficient defined as:

Bo‘ﬂ(z,t:,bb = —— Z / ngz bL, )fi/P(Z/7U)

1=9,9,9

e The PDF is known to be scaleless and defined as:

Scaleless ——> fg/P(Za ) = —zﬁ2-p1 Z<p1| [TT{Bﬁ(O)CS(ﬁ — 2N 'p1)B¢u(0)}] p1)

spins

* The matching coefficient is given by:

Z
00 (S b —2 [BO‘B Ztt by, }
n:9, Z( o7 T Ly H ) <Z ) finite part in dim-reg



Factorization in SCET

(— We are here
d*c

> > ~1

* After matching the iBFs to the PDFs we get:

d*c -1
~H®Z,; @ ;] @ L5 ; ® f;]®S5

* Group the perturbative pT scale functions into transverse
momentum dependent function(TMF):

d’o

~HRTL, L, 0S5} R
G R, QL 5 R fi [,

A T A
G

|

Transverse momentum

Hard function dependent function(TMF) PDFs




Factorization Formula

e Factorization formula in full detail:
d20' B CllCl
ﬁ%dY'_zi —12Q2
X fyCﬁjﬁml%gﬁW”g] fhihﬂ&bﬁzdﬁw}fMT)ﬂﬂvﬂhaﬂT,ﬂ¢Pﬂ%>MT)

! ! N/

Hard function. Transverse momentum PDFs.
function.

* The transverse momentum function is a convolution of the iBF
matching coefficients and the soft function:

dxl de

d.CCQ

— R T
gzj(x17x17x27x27pT7Y7:uT) — /dt:/dtn / _]_2‘]0(|bl‘pT)

X Iﬁa (:B,la

n;9,%

a (L2,
t;”ib_abJ_a ):Z’-Sg](x_ tn bi?:uT>
1 2

. (5 . 2 ta [5 2 ta
x S HmQ —e” PT‘th—a ToQ — e p2T+mi_§7bL;MT)



Fixed order and Matching
Calculations



One loop Matching onto SCET

OQCD = /dCUl/de C(wlng) O(wl,wg)

All graphs scaless and
vanish in dimensional

One loop SCET graphs regularization.

* Wilson Coefficient obtained from finite part in dimensional
regularization of the QCD result for gg->h. At one loop we
have: o ) o
. . CNn P11 - P2 Qg 11 9 n-pin - P
pin - — 14+ =20y | =+ — —In? (-
i = SB[ 2 (b))
(Ahrens, Becher, Neubert,Yang; Harlander)
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One loop graphs



Soft function

One loop graphs



Running



Running

* Factorization formula:

oo HOGI @ f, @ f
dpsdY o

* Schematic picture of running:

H

SCET Running
- g v KT ~ Pt
DGLAP Running

fi,

HQ ~ Mp

Agep



Running

* Factorization formula:

oo HQGI @ f; @ f.
dpsdY o

* Schematic picture of running:

H

SCET Running

o @

— HQ ~
All objects evaluated
at pI scale. No Landau

DGLAP Running

fi,

Agep



Limit of very small pT

* We derived a factorization formula in the limit;
my > Pr > AQCD

* For smaller values of pT, one can introduce a non-perturbative
model for the transverse momentum function:

o HoGi® f® f
dppdY T )

Hard function. Transverse momentum PDFs.
function.

l

Can make non-
perturbative model

Field theoretically Scale dependence and

defined object running known



Numerical Results

(Preliminary: To appear soon)



riggs P11 LU IDULIOI

Preliminary

* Prediction for Higgs boson pT distribution.



Z-production: Comparison with Data

Preliminary

* Excellent agreement with data.

* The result is free of any prescriptions’ and derived
entirely in QFT.



Conclusions

* Derived factorization formula for the Higgs/Drell-Yan
transverse momentum distribution in an EFT approach:

oo HQGI @ f; @ fi
dpsdY .

* Resummation via RG equations in EFTs.

* Formulation is free of Landau poles and prescription independent.

* Limit of very small pT described by an additional field
theoretically defined non-perturbative pT dependent function.

* Formalism applies to the pT distribution of any other color
neutral particles



